In less than a decade, wireless LANs have evolved from an innovative idea to an indispensable technology for millions of businesses and consumers. This technology will continue to evolve. The latest generation of high-speed wireless LAN solutions, based on the IEEE Draft 802.11n standard, are now available.

What does 802.11n deliver?

Better end-user experience for data, voice and video

- Throughput Up to 5 times greater than existing networks
- Reliability Fewer packet retries
- Predictability Consistent coverage and throughput
- Compatibility Backwards support for 802.11a/b/g clients

Higher throughput, more reliable connections to each client

802.11n Standard Update

Primary 802.11n Components:

Multiple Input Multiple Output (MIMO)

Beam Forming
Spatial multiplexing

- Channel Bonding
- Packet Aggregation

Signal to Noise Ratio (SNR)

- Amount of information received by receive signal depends on the amount of received signal strength exceeds the noise at the receiver
- The greater the SNR, the more information be carried and recovered by receiver

MIMO Technology: Beamforming

- Two radio signals sent out from different antennae, they are very likely to arrive at the receiver out of phase with each other
- Different in phase affects the overall signal strength of the received signal

Negative Interference

• By carefully adjusting the phase of the radio signals at the transmitter, the received signal can be maximised at the receiver, increasing SNR.

- Beamforming can effectively focuses the transmitters on a single receiver.
- Feedback from the receiver about the received signal. Help transmitter to tune each signal it sends.

Positive Interference

MIMO Technology: Multipath or Spatial Diversity

- Signal travels different paths to a single receiver
- MIMO radio sends multiple radio signals at the same time and takes advantage of multipath

MIMO Technology: Multipath or Spatial Diversity

- Each signal follows a slightly different path to the receiver
- Each radio can send a different data stream from the other radios
- Each receive radio independently decode arriving signals and each received signal is combined with signals from other receive radios

Two key significant benefits of MIMO are:

- Significant improves the SNR
- Use of multiple transmitters provide ability to use each spatial stream to carry its own information, dramatically increased data rates

Channel Bonding: 20MHz and 40MHz Chan nels

- 802.11n uses both 20MHz and 40MHz channels.
- Channel bandwidth increased and doubling data rate.

Packet Aggregation

- Increase efficiency by aggregating multiple packets of application data into a single transmission frame
- Send multiple data packets with fixed overhead cost of a single frame

Overhead

Aggregation

MIMO Technology Advantages

Greater reliability

- MIMO has able to communicate over multiple antennae eliminate dead spots
- Maintain optimal performance at greater distances

Greater throughput

• Combination of MIMO, channel bonding and packet aggregation allow 802.11n networks to achieve data rates as high as 300Mbps per radio

Greater coverage predictability

802.11n networks can support more clients using high-bandwidth applications

Backward compatibility with Existing Platforms

- 802.11n networks able to backward compatible with clients built under previous 802.11a/b/g wireless standards
- 802.11n Access Points will interoperate easily in mixed environments
- 802.11n can incorporate 802.11a/g clients with minimal